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p-Adic Stochastics and Dirac Quantization with 
Negative Probabilities 
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A new mathematical apparatus, a p-adic theory of probability, is applied to realize 
the hypothetical world based on negative probability distributions created by 
Dirac for the relativistic quantization of photons. Within the p-adic theory of 
probability, negative probability distributions are well defined (in the language 
of limits of relative frequencies, but with respect to ap-adic metric). We propose 
that the negative Gibbs distributions arising in relativistic quantization are 
described by p-adic stochastics. 

1. I N T R O D U C T I O N  

Negative probabilities of  certain states arose in a natural way in the 
relativistic quantization of photons (Dirac, 1942). Dirac proposed to consider 
a hypothetical world with negative probabilities as a mathematical idealization 
to resolve the problem of negative energy. This mathematical construction 
arose so naturally that he was sure that it must have some probability meaning. 
But it would be impossible to physically justify a quantum state with negative 
"probability" of  realization because this "probability" has no probability 
sense. A probability according to the Kolmogorov (1933) axiomatics is a 
positive-definite measure. Dirac (1942) did not consider the problem of 
negative probabilities in a rigorous way. He confined himself to noting that 
probably it would be similar to a negative sum of money, for example. 

For a long time the hypothetical Dirac world with negative probability 
distributions was considered as an interesting construction which can be 
useful in some cases but has no direct sense. In this paper we propose 
another point of  view on negative probability distributions in the relativistic 
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quantization of photons. Our considerations are based on p-adic numbers [on 
these numbers see, for example, Mahler (1973) or Schikhof (1984)], p-adic- 
valued quantum mechanics (Khrennikov, 1991, 1994a,b), and the p-adic- 
valued theory of probability (see the previous references and Khrennikov, 
1989, 1990). 

p-Adic physical models attempt to describe reality with the aid of a 
number field Qp which has many properties very different from the real or 
the complex case. The first results in this direction were the papers of 
Beltrametti and Cassinelli (1972), Vladimirov and Volovich (1984), Volovich 
(1987), Freund and Witten (1987), and Frampton and Okada (1988); see also 
Vladimirov et al. (1994). The main activity was connected with the theory 
of p-adic strings. The complex-valued amplitudes and wave functions (of 
string and later quantum mechanics and field theory) on p-adic space-time 
was the main object of these investigations. I consider another model of p- 
adic physics and study quantum mechanics with p-valued wave functions 
[p-adic-valued string amplitudes were also constructed in Volovich (1987)]. 

The main problem ofp-adic quantum mechanics is the probability inter- 
pretation of these wave functions. A new mathematical theory, a p-adic- 
valued theory of probability, was proposed to resolve this problem. As usual 
we consider a probability as a limit of relative frequencies vn, but with respect 
to another metric on the field of rational numbers Q. 

We base our game on the following evident fact. The only physical 
numbers are rational numbers. We can get in any experiment only finite 
fractions and not more general real, complex, (or p-adic) numbers. Then we 
can study these rational data with the aid of different mathematical methods. 
p-Adics helps us to find some additional information about these rational 
numbers which we cannot find on the basis of real numbers. In particular, 
there exist random sequences where vn oscillates between 0 and 1 with respect 
to the usual real metrics, but stabilize with respect to one of the p-adic 
metrics; Khrennikov (1994a) gives also the results of computer simulations. 
From the usual point of view such sequences are chaotic; it would be impossi- 
ble to define real probabilities. But there is a well-defined probability distribu- 
tion from the p-adic point of view. 

p-Adic probability has many of the properties of standard probability: 
additivity, conditional probabilities, independent events, etc. But one property 
is very different. In the usual case all probabilities belong to the segment 
[0, 1] of R. This fact is evident. Since relative frequencies obey 0 --< vn --< 
1, their limit is also between 0 and 1. But we can represent every rational 
number as the limit of v, with respect to the p-adic metric (Khrennikov, 
1994a). And in particular, every negative rational number can be presented 
as the limit of relative frequencies. This fact is the cornerstone of our further 
considerations. The negative probability distributions are ordinary objects in 
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the p-adic theory of probability. They have the same statistical connection 
with relative frequencies and negative probabilities, which is impossible in 
the usual theory of probability. 

2. p-ADIC NUMBERS 

The field of real numbers R is constructed as a completion of the field 
of rational numbers Q with respect to the metric O(x, y) = Ix - y I, where 
t. I is the usual absolute value norm. Fields of  p-adic numbers Qp are con- 
structed in the same way. There is an infinite sequence of p-adic number 
fields, a field for every prime number p = 2, 3, 5 . . . .  A p-adic norm I. I p 
is defined in the following way. 

First, we define it for natural numbers. Every natural number n can be 
represented as the product of prime numbers: n = 2r23 ~3 . . -  p"p . . . .  Then 
Inip = p - %  by the definition 101p = 0, I - n i p  = Inlp, and In/m[p = In lp /  
I mtp .  The completion of  Q with respect to the metric pp(x, y) = Ix - y tp 
is a locally compact field Qp. 

It is an intrinsic fact (Ostrovsky theorem) of the theory of numbers (see, 
e.g., Mahler, 1973; Schikhof, 1984; Borevich and Schafarevich, 1966) that 
the only norms on Q are the real one I. I or a p-adic one. 

As for real numbers, there exists a canonical expansion of p-adic 
n u m b e r s ,  

x = a_nlp  n + "'" ao + "'" + a~p k + "'" (1) 

where aj = 0, 1 . . . . .  p - 1 are digits of  the p-adic expansion. In a real case 
such an expansion is infinite in the direction of negative degrees and p-adic 
in the positive direction, and in both cases such an expansion is unique. The 
expansion (1) is the basis of  the p-adic statistical simulation. In a sense the 
negative probabilities can arise in the same way as - 1 = 1 + 2 + 4 + . . . .  
and this series converges in Q2. The following result will be very useful ("a 
dream of a bad student"): a series Y-, Wn, Wn e Qp, converges iff I Wn lp ---> 0, 
n --> ~ .  

Using the definition of  the p-adic valuation, we get I nl -< 1 for every 
natural number n. Thus the sequence I n![p is decreasing. Moreover, we have 

p(,-l)/(1-p) <_ In!l p < npp ,m -p )  (2) 

Let us suppose that the quadratic equation x 2 - "r = 0, "~ e Qp, has no 
solution in the field Qp. We use the symbol Z~ for the quadratic extension 
Qp(. ,~)  of the field Qp. T h e  elements of  Z, are represented as z = x + 
.,/~y, x, y ~ Qp, and the conjugation operation is Z = x - .,/-~y; the valuation 
on Z, is also denoted by I. Ip, [Zip = (I Izl2[p) 1/2. Introduce also an analog 
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of the Euclidean square length I Z l  2 = Z ~  = x 2 - -  ~ .y2.  This square length 
assumes its values in the field Qp (but I-Ip assumes its values in the field of 
real numbers). 

We shall be interested in square roots of x = - 1  in Qp. This square 
root exists in Qp if p = 1 (mod 4). Thus, if p ~ 1 (mod 4), then this square 
root does not exist in Qp and we can use the quadratic extension Zi = Qp(i) 
as the field of the complex p-adic numbers. This choice will be convenient 
for realizing the Dirac quantum states. 

3. ANALYSIS OF THE FOUNDATIONS OF THE 
THEORY OF PROBABILITY AND A p-ADIC 
THEORY OF PROBABILITY 

The basis of the modem theory of probability is a measure-theoretic 
axiomatics (Kolmogorov, 1933). A probability is a normalized measure 
assuming its values in the segment [0, 1] C R. But why? To formulate his 
axioms, Kolmogorov used the properties of frequency probability (von Mises, 
1919, 1964). 

A basic object of von Mises' theory is a collective. Let S ~ be a random 
experiment and T = {cq . . . . .  am} be a set of all possible realizations of S ~ 
(in the simplest case T = {0, 1 }). An infinite sequence of realizations of ~o 

x =  (x~ . . . . .  x~ . . . .  ), xi ~ T (3) 

is said to be a collective if for every label a ~ T there exists a limit of 
relative frequencies vn(c0 = k(a)/n: P(c0 = limn._,= vn(a). This limit is said 
to be a probability of ~x. In particular, why does a probability belong to the 
segment [0, 1] of the real line in the Kolmogorov axiomatics? No problem; 
0--< v~(c0 --< 1 and this is w h y 0 - < P - <  1. 

Now a sequence (3) is said to be a p-adic collective (Khrennikov, 1989, 
1990, 1994a) if a limit of relative frequencies exists with respect to the p- 
adic metric for every label c~ ~ A. This limit Pp(a) = limn_~ vn(a) is called 
a p-adic probability, p-Adic collectives are considered in Khrennikov (1994a) 
from the theoretical and computer simulation points of view. In a series of 
computer statistical experiments, relative frequencies oscillated between 0 
and 1 with respect to a real metric, but stabilize very quickly with respect 
to one of the p-adic metrics (p plays the role of a parameter of the model). 

A measure-theoretic definition of a p-adic probability is generated by 
the frequency definition. It is a Qp-valued normalized measure [on Qp-valued 
measures see Schikhof (1984)]. An example of a p-adic-valued distribution 
with negative probabilities of some events is proposed in the Appendix. 
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4. A p-ADIC HILBERT SPACE AND p-ADIC-VALUED 
Q U A N T I Z A T I O N  

The definition of the p-adic Hilbert space (Khrennikov, 1991, 1993, 
1994a,b) is based on the coordinate representation (an analog of 12). For the 
sequence h = (h,) e Qp, hn :~ 0, we set 

7s --- { f =  (f,): the series ~ f 2 h ,  converges} 

We have 

~x  = { f =  (f~): l i m l L l p ( l x , , ] S  2 = 0} 
/Z--->~ 

In the space ~x  we introduce a norm ]]fllx = max, Ifn [p(I ~. n ]p)l/2. The space 
~x is a non-Archimedean Banach space. On the space ~x  we introduce an 
inner product (.,.) consistent with the length Ifl 2 = ~ f z k~, setting (f, g)x 
= s f ,  gnkn. The inner product (.,-): ~x  • ~a  --+ Qp is continuous and we 
have the Cauchy-Buniakovski inequality: 

](f, g)xlp ~ Ilfll'llgll (4) 

Definition 1. The triplet (~x, (',')x, II'llx) is called a coordinate Hil- 
bert space. 

An inner product on the Qp-linear space E is an arbitrary nondegenerate 
symmetric bilinear form (.,-): E • E ~ Qp. It is evidently impossible to 
introduce an analog of the positive definiteness of a bilinear form. For 
instance, for the field of p-adic numbers any element -/ E Qp can be repre- 
sented as y = (x, x)x, x ~ ~ [this is a simple consequence of properties of 
bilinear forms over Qp; see, for example, Borevich and Schafarevich (1966)]. 
Weight coefficients k will be rational numbers in all applications. There is 
no difference between inner products (.,.)~ for ~ consisting of positive rational 
numbers and mixed positive-negative. For example, if all kj = 1, then there 
exist nonzero vectors x e ~• such that (x, x)x = 0. The same holds for the 
normalization of basis vectors e j = (e J, .) = (8oi). These vectors are orthogonal, 
but l eSl 2 = (e j, e j) = kj. The standard normalization is impossible also for 
positive rational coefficients, since a square root ~ may not exist in Qp. 
From the p-adic point of  view the weight sequence kj = n! has the same 
problems of normalization as kj = (-1)nn!. Thus, the weight sequence plays 
an important role in our case (see further the investigation of the Dirac 
relativistic quantization of photons). 

The triplets (Ej, (-,.)j, II'11i), J = 1, 2, where E i are non-Archimedean 
Banach spaces, II'llj are norms, and (.,.)j are inner products satisfying (4), 
are isomorphic if the spaces El and E2 are algebraically isomorphic and the 
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algebraic isomorphism I: E1 ~ E2 is isometric and unitary, i.e., 11Ixl]2 = ]]xl] 1, 
(Ix, Iy)2 = (x, Y)I. 

Definition 2. The triplet (E, (-,-), I1"11) is a p-adic Hilbert space if it is 
isomorphic to the coordinate Hilbert space (~x, (',')• I1" IIx) for a certain k. 

The isomorphic relation divides the class of Hilbert spaces into equiva- 
lence classes. We shall define the equivalence class of Hilbert spaces by 
some coordinate representative ~ .  

Example 1. Let h = (1) and Ix = (2n). The spaces ~x  and ~ belong 
to the same class of equivalence for the field Qp, p ~ 2, and to different 
classes for the field Q2- 

But it is a hard, unresolved mathematical problem to classify p-adic 
Hilbert spaces. 

Hilbert spaces over quadratic extensions Z~ = Qp(,f~) can be introduced 
by analogy. For the sequence k = (hn) e Qp, kn ~ 0, we set 

~x  = {f = (fn) ~ Z•: 

the series ~ ]fn [zk n converges in the field Qp} 

= { f =  (f~): lim[fnlp(lhnlp) lIE = 0} 
n---),oo 

Ilfllx = maxl/=[p(lx~[p)'/2 

(f, g) = ~afngn)tn; [J]2 = (f, JOX -= ~ ]fnl2~'n E ap 

The triplet (~x, (',')x, I1" IIx) is a non-Archimedean complex coordinate 
Hilbert space. The non-Archimedean complex coordinate Hilbert space (E, 
( ' , ' ) ,  I1"11) is defined as an isomorphic image of a coordinate Hilbert space. 

Note that the normalization problem is present also in the case of complex 
p-adic Hilbert spaces. For example, it is also impossible to normalize weight 
sequence hj = n!. 

Now we can consider p-adic complex Hilbert spaces as the state spaces 
of p-adic-valued quantum mechanics; observables are symmetry operators. 
The connection with ordinary quantum mechanics is based on the rational 
numbers. As all observables in real experiments have rational values, we can 
realize these observables in both ordinary quantum mechanics and in the p- 
adic one. What is the difference between the two formalisms? We investigate 
new asymptotic properties using p-adic numbers. The p-adic Hilbert space 
consists of new quantum states which were impossible to realize in ordinary 
quantum mechanics. 

The statistical interpretation is based on the p-adic theory of probability. 
Let f ~ ~x, Ifl = (f, f)• = 1. In a long series of experiments relative 
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frequencies VN(j) = n(j)/N of realizations of the states e j approach the p- 
adic probabilities Pp = hj Ifjl 2. 

We can consider a quantum mechanical model based on p-adic Hilbert 
space as the extension of the superposition principle. We use new linear 
combinations of eigenstates which do not belong to the ordinary Hilbert 
space (it is possible to consider only rational coordinates). 

5. THE DIRAC FORMALISM AND ITS p-ADIC PROBABILITY 
INTERPRETATION 

To delete the divergences, Dirac proposed to consider the representation 
including positive and negative energies. Then to resolve the problem of 
negative energies, he proposed to consider operators of emission of  photons 
with negative energy as absorption operators of  photons with positive energy. 
But this picture contains negative probabilities of absorption of any odd 
number of photons. 

Let A l(x) be operators of the quantum electrodynamics of Heisenberg 
and Pauli referring to the emission and absorption of photons into positive- 
energy states: 

where ko = + (k~ + k 2 + k2) 1;2 and Rk is the emission operator and/~k the 
absorption operator. In the same way it is possible to introduce the operators 
AZ(x) referring to the negative energy; there is a representation similar to (5) 
but with ko = -(k~ + k2 2 + k32) 1/2. Dirac considered operators A 3 = (l/v/-2) 
(A ~ + A 2) which are expanded with respect to operators Rk and Rk correspond- 
ing to positive and negative energies. 

The idea was to resolve all divergence problems in the symmetric A3(x) 
representation. Then there is the possibility to get information about the A~(x) 
representation. But it would be impossible to apply the linear transformation 
between the A3(x) and A~(x) representations to the wave function of  the A3(x) 
representation. There would arise the same divergences. But it is possible to 
do this with the initial Gibbs ensemble of the A3(x) representation. 

It is convenient to consider with A3(x) the additional fields B3(x) = 
(1/~f2)[Al(x) - AZ(x)], which commute with A3(x),  so  they are redundant 
variables. Now let us take B equal to the initial value of A 3. Then for the 
initial wave function t~, 

(B3(x) - A3(x))~J = 0 

or Rkq; = 0 with ko either positive or negative. Thus any absorption operator 
applied to the initial wave function gives the result zero, which means that 
the corresponding state is one with no photons present. 
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The following natural interpretation of the wave function at some later 
time now appears. That part corresponding to m photons of positive energy 
and n photons of negative energy can be interpreted as corresponding to m 
photons having been emitted and n photons having been absorbed. This 
confirms to the laws of conservation of energy and momentum. 

Then Dirac considered the momentum representation of A3(x) and B3(x) 
operators. Let k be a momentum-energy vector, k 2 = 0, and ~k~, ~ be 
operators of emission and absorption. We have ko = --+-(k 2 + k 2 + k23)1/2. Then 
set ~k~ = ~-k~ for ko > 0 and consider the wave function t~ as t~ = t~({, ~), 
ko > 0. The following commutation relations hold: [~*, ~] = c and [~*, 4] 
= - c , c >  O. 

The variable ~ corresponds to the emission of photons of positive energy, 
k0 > 0; and ~ corresponds to the absorption of photons of positive energy, 
k0 > 0. Let us denote the space of states ~(~, ~) by the symbol ~ .  The Dirac 
inner product in ~ has the form 

cr 

(f, g) = ~ fm.g.,,,m! cmnl ( -c )"  (6) 
m,n==O 

for the functions 

f(~, ~) = ~ fmn~m~ n, g(~, ~) = ~ gm.~m~" (7) 
m n  m n  

Now for the wave function ~(~, ~), normalized by II1/I 2 = (~ ,  ~ )  = 1, 
the probability of there having been m photons emitted into momentum and 
energy state k (corresponding to ~) and n photons absorbed from this state is 

P(m, n) = ]~mnl2C~m! (--c)"n! (8) 

This gives a negative probability for an odd number of photons to have been 
absorbed. But this statistical interpretation has no sense within the ordinary 
theory of probability. This is why Dirac considered Gibbs ensembles of this 
type as ideal mathematical objects. But at the same time he was surprised that 
this ideal Gibbs ensemble is very similar to usual physical Gibbs ensembles. 

We use p-adic quantum theory to realize these Gibbs ensembles as real 
Gibbs ensembles, which can exist in nature, but describe them with the aid 
of another type of stochastics, p-adic [on the results of computer statistical 
simulation of p-adic distributions see Khrennikov (1994a)]. 

Now let us realize the Dirac state space ~ as the p-adic Hilbert space 
~x, where k = (knm) is a two-index weight sequence and knm = cram! (--c)nnI 
and we consider the case of a rational number c > 0. The inner product (6) 
coincides with the p-adic inner product (',')x and the states (7) with the 
rational coefficients is the (dense) common domain of Dirac's and our consid- 
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erations. If we realize the state (7) as the element of ~ and have the 
normalization condition If[ = 1, then we get the standard statistical interpreta- 
tion for this state with the only remark that relative frequencies stabilize with 
respect to the p-adic metric. We propose a rigorous mathematical meaning 
for Dirac's main formula (8) by setting the p-adic probability Pp instead of  
the real probability P. The relative frequencies can oscillate between 0 and 
1 with respect to the real metric [see computer statistical experiments in 
Khrennikov (1994a)] and there is no way to give a mathematical description 
within the usual formalism. Our description is new from the mathematical 
point of view (new approach to the theory of probability), but sufficiently 
standard from the physical point of  view because we use, as usual, the 
frequency approach to a notion of probability and have a bridge to the reality 
with the aid of rational relative frequencies. Of course, there is also a new 
physical step. It is the extension of the superposition principle on the basis 
of the p-adic Hilbert space to include new quantum states. 

Thus, Dirac's  states (7) are physical  states, but correspond to a new 
class o f  random sequences.  

APPENDIX. EXAMPLE OF p-ADIC PROBABILITY 
DISTRIBUTION W I T H  RATIONAL VALUES AND NEGATIVE 
P R O B A B I L I T I E S  OF SOME EVENTS 

Let 1~ be the standard Bernoulli probability space; it is the space of 
sequences to = (~oj-), ~oj = 0, 1. Let I = UI,, where I, is the set of all vectors 
of length n with coordinates 0, 1. Let i ~ In and Bi = {o~ E 1~: to1 = il, 
. . . .  co n = i, }; it is a cylindrical subset. Then the standard Bernoulli probability 
is defined by ~(Bi) : 1/2 n. It is an additive set function and it can be extended 
to the standard Bernoulli probability ~ on the or-algebra generated by {Bi}. 

But we are interested in another extension of  ~L. As ~L assume its values 
in Q, it is also possible to consider it as a Qp-valued measure. For example, 
it is possible to choose p = 3. It can be extended to a bounded Q3-valued 
measure P~3, 3-adic probability. We note that ~ is isomorphic to the unit ball 
UI(0) = {x ~ Q2:Ix12 -< 1} of Qz [see the 2-adic expansion (1)] x E Ut(0) 
iff there is no negative degree of 2 in ( l)  and x ~ co, to1 = x0 . . . . .  ~on = 
x,+~ . . . . .  According to this isomorphism, Bi is a ball 

Uz-.(a)  = {x ~ Qz: [ x - a[2 -< 2-"} 

where a is an arbitrary point of Q2 with the property a0 = il . . . . .  a._ 1 = i.. 

Remark.  We cannot discuss here the theory of p-adic-valued measures 
(see Schikhof, 1984). It is a result of this theory that ~ can be extended to 
a bounded measure with values in every Qp, p 4= 2. 
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It is interesting that the probabilities p~ and ~3 coincide for all events 
which depend of a finite number of experiments (Bi). Thus, we cannot distin- 
guish these two distributions by experiment. 

Now let us introduce on 12 a density p: 1~ ---> Q to generate a new 
probability distribution. Set i.0 = (0 . . . . .  0) E I.  and S n = Bino\Bi(.+l)o. Then 

1"~ = [ , . IS, ,  Sn f-) Sm = O, n --/: m (A1) 
n=0 

Set p(h) = 3" on S,. Let us try to normalize a measure dr(k)  = p(h) 
d~(h) .  First, in the real case, J'n dv~(h)  = f n  p(h) d~o~(k) = ~. Thus, it is 
impossible to normalize this distribution and there is no standard probabil- 
ity distribution. 

Now let us consider the 3-adic case. We note that S, = {x E Q2: I xlz 
= 2-"} is a 2-adic sphere of radius 2 -n with center at zero. The representation 
(A1) is nothing else than the representation of the unit 2-adic ball as the 
union of spheres. We get 

= dv3(X) = ~] 3 " ( 1 / 2 " -  1/2 "+~) 
. = 0  

This series converges in Q3 as t(3/2)nl3 = 1/3 n ~ 0 and in the p-adic case 
the series E a.  converges i f f l an lp  ----) 0. We get ~ = - 1 .  Thus, we can 
normalize the density p(h)  ~ Pnorrn(h) = p(h) /8  and introduce the 3-adic- 
valued distribution dP3(h  ) = pno~m(h) dl~3(h)- The 3-adic probabilities of 
events S. are negative: P3(Sn) = - 3 " / 2  "+1, but the probabilities of some events 
are positive: for Bi.o = Uk%.Sk we get P3(Bino) = E ~ .  P3(Sk) = (3/2)". 

How would it be possible to express the probability distribution dP3(h  ) 
in an intuitive way? Let us realize f~ as the segment [0, 1], i: 12 --~ R, to 
s = Ef=~ toj.2-L Then i(So) = [1/2, 1], i(SO = [1/4, 1/2] . . . . .  i(S.)  = 
[1/2 n+l, 1/2"] . . . .  [i is not an isomorphism; for example, i((1, 0 . . . . .  0 . . . .  )) 
= i((0, 1 . . . . .  1 . . . .  )) = 1/2]. The probability density O(k) on [0, 1] has 
the form p(k) ~ 3" on the segment [1/2 n+l, 1/2n]. Thus, this probability 
distribution is very quickly concentrated in the neighborhood of zero, so 
quickly that real numbers cannot describe this increase. 
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